Polym Sci, 31 (1993) 2493.
[20] مزوملار. س، (تالیف)، رسولی. ع، (ترجمه)، ساخت کامپوزیتها، مواد، محصولات مهندسی فرایند، (1383).
[21] علی نژاد. د، نانوکامپوزیتها و کاربردهای آنها، زبان تصویر، (1386)
[22] X. Kornmann, H. Lindberg, L. Berglund, Polym Sci, 42 (2001) 1303-1310.
[23] L. Matuana, D. Kamdem, J. Zhong, Polym Sci, 80 (2001) 1943-1950.
[24] L. A. Utracki, Clay-Containing Polymeric Nanocomposite, UK, (2004) pp.2909-2915.
[25] جعفری نژاد. ش، عناصر پایه در فناوری نانو و نانوکامپوزیتهای پلیمری، (1388).
[26] A. Blumstein, Chem. Soc, 23, 899 (1961) 1315-1319.
90
[27] J. Luo, I. M. Daniel, Composites Science and Technology, 63 (2003) 1607-1616.
[28] K. Tanihara, M. Nakagawa, Nippon. Kagaku. Kaishi, 5 (1989) 227-238.
[29] M. F. Alexander, M. Dubois, Mater Sci & Eng, 28 (2000) 1-63.
[30] N. Hasegawa, H. Kasasumi, M. Kato, A. Usuki, A. Okada, J.Appl.Polym Sci, 67 (1998) 67-87.
[31] R. J. Crawford, Plastic Engineering , 3rd Edition, Butterworth Heinemann (1949) 175-186.
[32] P. Clavert, T. W. Ebbesen, CRC Press, Boca Ro ton Fl, 31, 9 (1998) 558-566.
[33] W. Helbert, J. Y. Cavaille, A. Dufresne, Polym. Comp, 17 (1996) 604-613.
[34] W. Helbert, J. Y. Cavaille, A. Dufresne, Polym. Comp, 17 (1996) 612-621.
[35] M. Zanetti, S. Lomakin, G. Camino, Macromol. Mater. Eng, 279, 4 (2000) 1-9.
[36] L. A. Utraki, Rapra Tech, 26 (2004) 10123-10133.
[37] H. Fischer, Mater. Sci. Eng, 23, 763 (2002) 763-772.
[38] T. J. Pinnavaia, G. W. Beall, Polymer-Clay Nanocomposites, John Willey & Sons, (2000) pp.349.
91
[39] P. Maiti, P. H. Nam, M. Okamoto, Polym. Eng. Sci, 42, 26 (2004) 9011-9018.
[40] E. T. Thostenson, C. Li, T. W. Chiu, Composite Sci. Tech, 65, 3 (2005) 491-516.
[41] Balazsi, Z. Konya, F. Weber, L. P. Biro, P. Arato, Mater. Sci. Eng, 23, 6 (2003) 1133-1137.
[42] Krishan Kumar Chawla, Ceramic Matrix Composite, Second Edition, Springer Publisher, 2003.
[43] P. Cavert, T. W. Ebbesen, Carbon Nanotubes, CRC Press, Boca Raton Fl, (1997) pp.292.
[44] J. Wen, J. E. Mark, Chem & Tech, 64 (1994) 806-816.
[45] L. Nicolias, G. Carotenute, Metal-Polymer Nanocomposites, John Wiley & Sons, New Jeresy, (2005).
[46] H. R. Dennis, D. L. Hunter, D. Chang, S. Kim, Polym, 42 (2001) 9531-9542.
[47] S. H. Wu, F. Y. Wang, Mater. Lett, 49 (2001) 33.
[48] S. S. Ray, M. Okamoto, Prog. Polym. Sci, 28, 641 (2003) 1539-1641.
[49] Y. Shi, F. Chen, J. Yang, M. Zhong, Applied Clay Science, 50 (2010) 87-91.
[50] Z. Hang, J. Manias, E. Wilkie, C. A, J. of Nanoscie and Nanotech, 8 (2008) 1597-1615.
92
[51] F. Gaudon, P. Taulemesse, J. M. Lopez Cuesta, Polym. Deg. Stab, 91 (2006) 3074-3082.
[52] L. Wei, T. Tang, B. Huang, Part A, Polymer Chemistry 42 (2004) 941-949.
[53] P. M. Ajayan, S. L. Schadler, P. V. Braun, Nanocomposite Science and Technology Eddition, Wiley-VCH, (2003) pp.125-136.
[54] M. Z. Rong, M. Q. Zhang, Y. X. Zhang, K. Friendrich, Polymer 45, 19 (2004) 6665-6673.
[55] G. Caroteuto, Y. S. Her, E. Matijevic, Ind. Eng. Chem. RES, 12 (1996) 4738-4746.
[56] G. Beyer, Plast, Addit. Compound, 4,22 (2002) 22-28.
[57] A. Dasari, J. Rohrmann, R. D. K. Misra, Materials Sci and Eng, 6 (2003) 67-81.
[58] O. C. Wilson, T. Olorunolemi, Appl. Clay. Sci, 15 (1999) 265-274.
[59] A. P. Mouritz, A. G. Gibsn, Fire Properties of Polymer Composite Materials, Pub Springer (2006) pp.38-57.
[60] http://www.macromolecule.ir
[61] http://www.wikipedia-org.blogsky.com.
[62] R. T. Conley, Thermal Stability of Polymers, Marcel Dekker, New York, (1970) pp. 223–258.
93
[63] N. Grassie, Chemistry of Polymer Degradation Processes, Butterworths, London, (1956) pp.1-50.
[64] N. Grassie, Encyclopedia of Polymer Science and Technology, Interscience, New York, (1966) p.647.
[65] N. Grassie, G. Scott, Polymer Degradation and Stabilization, Cambridge University Press, London (1985) pp.1-67.
[66] H. H. G. Jelinek, Degradation of Vinyl Polymers, Academic Press, New York, (1956).
[67] D. Gilead, G. Scott, In Developments in Polymer Stabilization, Applied Science Publishers Ltd, London, 5 (1981) p.71.
[68] Ahamed, N. T, Singhal, R. S, Kulkarni, P. R, Kale, D. D, & Pal, M, Carbo Polym, 31 (1996) 157–160.
[69] Ishiaku, U. S., Pang, K. W., Lee, W. S., & Ishak, Z. A. M, J.Euro Polym, 38 (2002) 393–401.
[70] J. E. Guillet, Polymers in Ecological Problems, Plenum Press, New York, (1973) pp.47-56.
[71] R. E. Klausmeier, Biodeterioration of Materials, John Wiley & Sons, New York, (1972).
[72] Ray Smith, Biodegradable Polymers for industrial applications,
Published in North America by CRC Press LLC 2000, New York, (2005).
[73] http://www.cpia.ca/search/results.php
94
[74] عبود زاده. ن، خاوندی. ع، بررسی اثر سایز ذرات در پلیمرهای زیست تخریب پذیر و مکانیزم تخریب این دسته از پلیمرها، کنفرانس فناوری نانو در محیط زیست، 1385
[75] G. Scott, Polym. Deg. Stab, 29 (1990) 135.
[76] D. F. Williams, G. Sir, In Comprehensive Polymer Science, 6 (1989).
[77] M. Kolybaba, L.G. Tabil, S. Panigrahi, W.J. Crerar, T. Powell,
B. Wang, Biodegradable Polymers: Past, Present, and Future, (2003).
[78] De-Yi Wang, A. Das, A. Leuteritz, R. Boldt, L. Haubler, Polymer Degradation and Stability, (2012) 1-6.
[79] http://www.wikipedia.org
[80] L. Reimer, Scanning Electron Microscopy, Springer-Verlag, (1998).
[81] B. L. Gabriel, SEM: A User’s Manual for Material Science, ASM, (1985).
[82] L. A. Bendersky, F. W. Gayle, J. Res. Natl. Inst. Stand. Tech, 106 (2001) 997-1012.
[83] Ch. R. Blanchard, Springer-Verlag New York, 1, 5 (1996).
[84] M. Siddiq, K. Mahmood, M. K. Baloch, J. Chem. Soc. Pak, 27 (2005) 148.
[85] R. Seoudi, M. Kamal, A.A. Shabaka, E.M. Abdelrazek,W. Eisa, Syn Met, 160 (2010) 479–484.
95
[86] Vineet Singh, P.K. Sharma, Pratima Chauhan, Mater Chara, 62 (2011) 43-52.
[87] Kunhua Yao, Jie Cai, Miao Liu, Yan Yu, Hanguo Xiong, Shanwen Tang, Shiyong Ding, Carbo Polym, 86 (2011) 1784– 1789.
[88] M. Yousefi, M. Salavati-Niasari, F. Gholamian, D. Ghanbari, A. Aminifazl, Inorg. Chim Acta, 371 (2011) 1–5.
[89] H. Kasgoz, A. Durmus, A. Kasgoz, Polym. Adv. Technol, 19 (2008) 213.
[90] M. Taghi Taghizadeh, Z. Abbasi, Z. Nasrollahzade, J. of the Tai Inst of Chem Eng, 43 (2012) 120–124.
[91] http://www.wikipedia.com

96

Abstract
In latest years investigation on polymeric nanocomposites have attracted many attentions and this is because of mechanical, thermal, optical and physics chemistry properties of these polymers than pure polymer and general composites. in the past decades, attentions had been focused on clay polymer nanocomposites, whereas in the last decade the scientist attentions have been on other mineral nanofilters.
PVA is one of the nature-compatible, water –soluble synthetic polymers that has got excellent properties in the environment. Regarding solubility and biodegradability, this polymer as an invaluable commercial and industrial product causes little damage to the environment. That’s why it has attracted many researchers’ and craftsmen’s attention. However, PVA properties can be enhanced by dispersion of various mineral nanoparticles.
In this research, CdS nanoparticles synthesized by co-percipitation method. Starch/PVA/CdS nanocomposites are supplied by polymer Solutio intercalation method through adding synthesized nanoparticles to polymer.
During this project, the structure of supplied nanoparticles and nanocomposites were investigated by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray spectroscopy (EDX).Also in this study, the mechanical, thermal, optical, water absorption and Enzymatic degradation of samples were studied, afterwards, the obtained results related on some sampeles were compared.
Keywords: Poly vinyl alcohol, Starch, Nanocomposite, Nanoparticle, Polymer solution intercalation, properties of nanocomposites, biodegradable

University of Kashan
Faculty of science
Department of chemistry

Thesis
For Degree of Master of Science (M.Sc)
In Physical Chemistry

Title:
Preparation and characterization of biodegradable starch/polyvinyl alcohol (PVA)/CdS nanocomposites

Supervisor:
Prof.Mohsen Mohsen Nia

By:
Sajedeh Hayati Samian

September 2012

1Richard Feynmen
1
1Nano Cluster
2Nano Wire
3Clay
4Zeolite
2
1Sol-Gel
5
1Microemulsion
2Hydrothermal
6
1Ultrasonic

8

1Nanocomposites
2Clay
3Blumstein
4Montmorillonite
5Union Oil
6Unichicka

10
1Toyota
2Timing Belt Cover
3Ubi
4Ubikita
5Bayer
6General Motors
11
1Barrier
2In Situ Polymerization
3Nano Cluster
12
1Nanotubes
2Whiskers

13
1Melt Mixing
2In Situ
16

1Sol-Gel
17
1Template
18
1Depolymerise
2Unzipping mechanism
25
1Hydrolytic degradation
2Ultrasonic degradation

26
1Radiation
2Biological degradation
27
1Drug delivery
2Union Carbide Corporation
28
1Kitin
2Chitosan
3Alginic acid
4Gelatin
29
1Microorganisms

30
1Biological Catalysts
31
1Depart
2Nodax
33
1Bragg’s law
35
Ostwald1
Ubbelohde2

42
Intrinsic viscosity1
Relative viscosity2
Specific viscosity3
Mark-Houwink4

43
1Plasticizer

45
Debye-Scherrer1

59
—————

————————————————————

—————

————————————————————

دسته بندی : No category

دیدگاهتان را بنویسید